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Abstract

This short note presents a derivation of the velocity description of deformation for the geometric models of pure-shear and simple-shear fault-

bend folding. This allows the calculation of rates of displacement, uplift and limb-rotation associated with such structures and their comparison

with classical fault-bend folds. Using this velocity description, we examine the differences between pure-shear and simple-shear fault-bend folds,

in terms of uplift, limb rotation and particle trajectories resulting from deformation.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The concept that thrust sheets might undergo substantial

internal deformation is not new, but its quantification and

application to fault-bend folding is (Jordan and Noack, 1992;

Suppe et al., 2004). In particular, Suppe et al. (2004) have

recently put forward a novel geometric model of ‘shear fault-

bend folding’ that encompasses both simple shear and pure

shear in a basal detachment zone, developed as a result of

observations that this type of shear is commonly observed in

seismic and field examples (see Suppe et al., 2004). Shear fault-

bend folding produces ramp anticlines with very distinctive

shapes: the anticlines are characterized by long, gently dipping

backlimbs that dip less than the fault ramp (Suppe et al., 2004;

Fig. 1a and b). A key feature of this model is that the ramp

anticline grows by both limb rotation and kink-band migration,

leading to backlimb dips and limb lengths that increase

progressively with fault slip. Shear fault-bend folding, in the

limit of zero basal shear zone thickness, is identical to classical

fault-bend folding above a basal detachment where the

backlimb dip is equal to the fault dip (Fig. 1c; Suppe, 1983).

Suppe et al. (2004) successfully compared the shear fault-bend

folding model with some well-constrained natural examples in
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the Cascadia and Nankai subduction zones, and shear fault-

bend folding has been shown to be common in passive-margin

toe-thrusts in the Niger Delta (Corredor et al., 2005).

However, while this geometric model appears to match

observational data very well, there is no simple analytic

method of quantifying rates of uplift and rotation associated

with such structures, enabling their combination with models

of growth sedimentation or other rate-dependent processes (cf.

Hardy et al., 1996). This short note addresses this issue by

deriving an equivalent velocity description of deformation

from the geometric model of shear fault-bend folding. We

illustrate its use by examining the differences between pure-

shear and simple-shear fault-bend folds, in terms of uplift, limb

rotation and particle trajectories resulting from deformation.
2. Shear fault-bend folding

2.1. Geometric description

It is not the intention of this section to give a detailed

derivation of the geometric model of shear fault-bend folding

but rather to provide sufficient background to show the manner

in which it can be transformed into a velocity description of

deformation. For a detailed description of shear fault-bend

folding the interested reader is referred to Suppe et al. (2004).

Shear fault-bend folding fundamentally derives from the

premise that distributed deformation may occur within a

weak décollement of finite thickness at the base of a fault ramp

(Fig. 1). Deformation in this unit is distinct from that in the
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Fig. 1. The geometric models of (a) simple-shear fault-bend folding and (b) pure-shear fault-bend folding, where a is shear or dimensionless fault slip (tanK1(d/h)),

db is backlimb dip, q is ramp dip, g is the angle of the synclinal axial surface and j is its offset in the case of pure-shear fault-bend folding. Basal décollement zone

illustrated in grey. In these examples we show a fold developing above a 308 ramp, with a 500-m-thick basal décollement zone and 600 m displacement. (c)

Equivalent classical fault-bend fold with a 308 ramp and 600 m displacement. See text for discussion.
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overlying strata, which are the particular focus of this paper.

There are two end-members: pure-shear and simple-shear

fault-bend folding. In simple-shear fault-bend folding, the

décollement layer undergoes bedding-parallel simple shear

with no actual basal fault-slip per se (Fig. 1a). In pure-shear

fault-bend folding, the basal layer undergoes shortening

parallel to bedding (Fig. 1b). In both end-members the weak

layer is overlain by strata that undergo flexural slip and have no

external shear applied, conserving layer thickness and bed

length. The fundamental equation of shear fault-bend folding is

as follows (Suppe et al., 2004; Fig. 1):

cotðaÞZ
sindb
2C

1

sindbcotqC1Kcosdb

� �2�

K
1

sindbcotqC1Kcosdb

� ��
ð1Þ

where aZtanK1(d/h) is an external shear or a dimensionless

ratio of displacement to basal thickness, db is backlimb dip, q is

ramp dip and C is a constant representing the ratio of area of

shortening to displacement and basal thickness. For the end-

member cases, C is 1 for pure-shear and 1/2 for homogeneous
simple-shear. In addition, fault-parallel displacement (rr 00) is

given by (Suppe et al., 2004):

rr 00 Z
dsing

cosððdb=2ÞKqÞ
(2)

The position and orientation of the back synclinal axial

surface is straightforward in the simple-shear case as it bisects

all layers:

gZ 90Kdb=2 (3a)

but its angular offset (j) within the basal layer in the pure-shear

case is given by:

cotjZ cotqC2cotg (3b)

Suppe et al. (2004) presented a detailed analysis of this

model and showed its application to a variety of natural

examples. Below we now derive an equivalent velocity

description of deformation of this geometric model and discuss

its implications.
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2.2. Velocity description

The motivation behind deriving a velocity description of

deformation of shear fault-bend folding is to allow us, for an

increment of slip, to calculate rates of displacement, uplift and

limb-rotation associated with such structures. In shear fault-

bend folding two distinct processes are occurring at the same

time (for an infinitely small time-step/increment of slip): kink-

band migration and limb-rotation. The velocity descriptions of

deformation for both of these processes acting on their own

already exist (Hardy and Poblet, 1994, 1995; Hardy, 1995). A

velocity description of deformation for shear fault-bend folding

will allow us to separate and to quantify the influence of each

process on uplift and rotation rates above such structures.

We present here a velocity description of deformation for

shear fault-bend folding solely for material above the basal unit;

we do not consider velocities within the basal unit. In order to

derive the velocity descriptionwemust firstly numerically solve

the fundamental equation of shear fault-bend folding, Eq. (1), by

Newton’s method, as there is no analytic solution. This is done

by re-arranging Eq. (1) such that db occurs on both the left- and

right-hand sides of the equation. We then choose an

approximate solution for the backlimb dip, db, solve Eq. (1)

for db, and then use the derived value of this variable as the new

guess until both guess and solution are (to some specified

degree) equivalent. This allows us to derive, for a given rampdip

and shear (tanK1(d/h)), the backlimb dip, db. It is then

straightforward to calculate, for an increment of slip, the limb

rotation rateu (radians per time-step), which is given as the time

derivative of the change in limb dip over that time-step.We then

solve for the position of the upper axial surface by finding the

distance rr 00 from Eq. (2), and the position and orientation of the

synclinal axial surface using Eq. (3a). Therefore, for a finite

time-step, and increment of fault slip, we now know the position

of all the axial surfaces that define the boundaries of the different

domains in the growing fold (Fig. 2). Velocities can now be

derived for each of these domains. It is important to note that

there are three distinct velocity domains above the basal

décollement layer. In domain 1, material is simply being

displaced parallel to the basal décollement, in domain 2,
Fig. 2. The velocity model of shear fault-bend folding illustrated for the simple-she

rate, u is the rotation rate, x and y are the horizontal and vertical locations of a point,

the velocities at the boundary of domains 2 and 3. The basal unit has a thickness o
material is both rotating and being displaced parallel to the

current orientation of the backlimb, while in domain 3, material

moves at the same rate as the upper limit of domain 2, ensuring

both continuity and no gaps/overlaps with the fault. The

horizontal and vertical velocities within the three domains are

then given by:Domain 1:

u Z s v Z 0 (4)

Domain 2:

u Z s:cosðdbÞKuðyKy0Þ v Z s:sinðdbÞCuðxKx0Þ (5)

Domain 3:

u Z ub v Z vb (6)

where u and v are horizontal and vertical velocities (m/ka),

respectively, s is the slip rate (m/ka),u is the rotation rate, x and

y are the horizontal and vertical locations of a point, x0 and y0 are

coordinates of the centre of rotation for that point (the point of

intersection between the kink axis and the bedding surface that

contains that point), and ub and vb are the velocities (m/ka) at the

boundary of domains 2 and 3.We present amore general version

of this analysis for the case of a ramp that connects to an upper

fault flat in a later section.

These domains and their velocities are valid for both simple-

and pure-shear fault-bend folds. Importantly, for domain 2,

they explicitly separate the influence of kink-band migration

and limb-rotation on the horizontal and vertical motion above

such structures. In the limit of zero basal shear zone thickness,

the backlimb undergoes instantaneous rotation and the

velocities are identical to those of classical fault-bend folding

(cf. Hardy and Poblet, 1995). Having derived this velocity

description of shear fault-bend folding, we can now proceed to

examine the evolution of, and uplift and rotation above, such

folds and compare them with classical fault-bend folds.
3. Progressive evolution of a shear fault-bend fold

with growth strata

In this section we show the equivalence to the geometric

model of our velocity-based approach to shear fault-bend
ar case: u and v are horizontal and vertical velocities, respectively, s is the slip

x0 and y0 are coordinates of the centre of rotation for that point and ub and vb are

f h and a displacement of d. See text for discussion.
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folding by showing the progressive evolution of a simple-shear

fault-bend fold. We examine the evolution of a simple-shear

fault-bend fold developing above a 308 ramp, with a 500-m-

thick basal décollement zone. Far-field fault slip is assumed to

be 1.0 m/ka and the model is run for 600 ka, giving 600 m

displacement. In addition we include simple ‘fill to the top’

growth sedimentation beneath a base-level that rises at

0.75 m/ka, growth strata are added every 100 ka. We

numerically model this using a simple Lagrangian coordinate

system, with a spatial resolution of 7.5 m and a time-step of

100 yrs.
Fig. 3. Evolution of a simple-shear fault-bend fold developing above a 308 ramp, w

1.0 m/ka and the model is run for 600 ka, giving 600 m displacement. We include s

0.75 m/ka; growth strata are added every 100 ka. Model is shown at 0, 100, 200, 4
The evolution of this structure after 0, 100, 200, 400 and

600 m displacement is shown in Fig. 3. We see clearly from

this figure the manner in which the fold develops: the limb

lengthens with increasing displacement and rotates at the

same time. The growth strata reflect these kinematics

showing components of both limb rotation (a fanning

wedge of strata) and a growth triangle reflecting kink-band

migration. We have quantitatively confirmed that our

velocity description of deformation is equivalent to the

theoretical geometric model in terms of limb dips, lengths

and growth patterns.
ith a 500-m-thick basal décollement zone. Far field fault slip is assumed to be

imple ‘fill to the top’ growth sedimentation beneath a base-level, which rises at

00 and 600 m displacement.
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4. Uplift and rotation above shear fault-bend folds

One aspect of shear fault-bend folding that can immediately

be derived from a velocity description of deformation is the

manner in which uplift of the fold crest and rotation of the fold

limb occurs as displacement is accumulated. We illustrate this

in Fig. 4 for a simple-shear and a pure-shear fault-bend fold

developed under identical conditions. As above, both folds

develop above a 308 ramp, with a 500-m-thick basal

décollement zone and 600 m displacement. Far-field fault

slip is set at 1.0 m/ka.

The geometries of the final folds are shown in Fig. 1a and b.

The uplift of both fold crests with time is shown in Fig. 4a and

the corresponding rates of uplift are shown in Fig. 4b. In both

cases we see that the difference in absolute uplift between a

pure-shear and a simple-shear fault-bend fold is negligible,

with the pure-shear case having marginally more uplift. On

Fig. 4a we also show the theoretical uplift above a classical

fault-bend fold developing under identical conditions. It is

clear that both simple-shear and pure-shear fault-bend folds

produce more uplift than their classical counterparts. We have

confirmed that this is a general feature of shear fault-bend

folding (Fig. 5).

It can also be seen that, for both folds, the rate of uplift

decreases as displacement is accumulated, approaching a value

of 0.50 m/ka consistent with the convergence of classical fault-

bend folding and shear fault-bend folding kinematics for very

large displacements or small shear zone thickness (Fig. 4b).

The evolution of limb dip with time for both folds is shown in

Fig. 4c. It can be seen that there are much more marked
Fig. 4. Folds developed after 600 m displacement above a basal zone 500 m thick, w

(m/ka) above the fold crest vs. time, (c) limb dip (8) and (d) limb rotation rate (8/k
differences in backlimb dip between the end-member models,

with the pure-shear fold having a gentler backlimb. In addition,

in both cases we see that rotation rate decreases markedly as

displacement accrues (Fig. 4d). This is particularly so in the

case of simple-shear fault-bend folding.

These uplift and rotation rates, and their temporal and

spatial variations, are quite distinctive. Importantly, in a

manner similar to other styles of fault-related folding (cf.

Hardy and Poblet, 2005), they offer the possibility that, with

appropriate geomorphic or neotectonic data, the kinematics

and, ultimately, deeper structure of an active fold may be better

constrained. An obvious important difference between shear

and classical fault-bend folding in this regard is in the inferred

far-field slip rates based on limb dip and uplift rates. For active

structures suspected to be fault-bend folds, it is common to

calculate (slip rate)Z(uplift rate)/sin(limb dip), e.g. Lavé and

Avouac (2000). Implicit in this calculation is that the thrust is

stepping up from a detachment and that it is a classical fault-

bend fold, i.e. dbZq. Fig. 5 shows that if a structure is a shear

fault-bend fold this approach always underestimates the slip

rate. For example, for a measured limb dipZ208 with a ramp

dipZ308, the slip rate is underestimated by approximately

63%.
5. Particle trajectories in a shear fault-bend fold

In order to illustrate the key differences between shear fault-

bend folding and classical fault-bend folding it is useful to

examine particle trajectories above the fault ramp in the models

discussed here. These particle trajectories are illustrated in
ith a ramp of 308 and a far-field slip of 1 m/ka. (a) Uplift (m) and (b) uplift rate

a) vs. time (for final geometry, see Fig. 1a–c).
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Fig. 6, for a subset of modelled particles, for simple-shear,

pure-shear and classical fault-bend folding.

In general, for both simple-shear (Fig. 6a) and pure-shear

(Fig. 6b) fault-bend folding the particle trajectories are
Fig. 6. Particle trajectories above the fault ramp, for a subset of particles, in the mode

folding.
complex and curvilinear reflecting the kinematics in the fold

limb, which combines both kink-band migration and limb

rotation. As one progresses away from the crest of the fold

along each of the three marker beds there is a transition from
ls discussed above: (a) simple-shear, (b) pure-shear and (c) classical fault-bend
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u = R.s
v = 0

γ '

θ

Fig. 7. Illustration of the additional velocity domain needed in the kinematic

model when the ramp associated with a shear fault-bend fold connects to an

upper flat. Domains 1–3 are as in Fig. 3, whereas domain 4 contains only a

simple translational component of motion; see text for discussion.
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trajectories sub-parallel to the fault ramp to trajectories sub-

parallel to the décollement. This is because the axis of rotation

is the intersection of a layer and the synclinal axial surface and

with time, particles are moving farther from this axis of

rotation. Particles that are farther from the synclinal axial

surface have a greater component of displacement due to

rotation than those close to the axis of rotation and thus have a

greater vertical component. In contrast, the particle trajectories

for a classical fault-bend fold (Fig. 6c) are markedly different.

They are all parallel to the fault and only change orientation

(instantaneously) across the synclinal axial surface. This kink-

band migration component can also be seen in the shear fault-

bend fold trajectories as an abrupt change in orientation at the

synclinal axial surface. The geometry of the corresponding

growth strata reflects this variation in kinematics.
Fig. 8. Evolution of a (a) simple-shear and (b) pure-shear fault-bend fold develope

décollement zone. Far field fault slip is assumed to be 1.0 m/ka and the model is run f

sedimentation beneath a base-level, which rises at 0.75 m/ka; growth strata are add
6. Shear fault-bend folds with an upper flat

In the main body of this paper we have derived a velocity

description of deformation based on the geometric model

originally presented by Suppe et al. (2004). Here we present a

slight generalization of the method to include an upper flat in

the kinematic scheme. This introduces a fourth velocity

domain into the kinematic description (Fig. 7); the three

other domains are identical to those previously described. We

assume that, unlike our previous derivation, the ramp links with

an upper flat (Fig. 7). The kinematics describing the transition

from the flat crest of the structure to the dipping forelimb are

extremely simple and are governed by the equations of Suppe

(1983). The inclination of the frontlimb axial surface (g 0) and

the change in slip across it (R) are given by:

tanðqÞZ sinð2g0Þ=ð2cos2g0 C1Þ (7)

R Z sinðg0KqÞ=sinðg0Þ (8)

Thus, given the slip rate parallel to the fault in domain 3 (s)

and the orientation of the frontlimb axial surface, the horizontal

and vertical velocities in domain 4 are:

u ZR:s v Z 0 (9)

Therefore in domain 4 there is only translation parallel to

the upper flat and thus the vertical velocity is zero. Once

calculated, it is a simple matter to include this additional

velocity domain in the modelling scheme. We show this in

Fig. 8 where both simple-shear and pure-shear fault-bend folds

with boundary conditions identical to those illustrated

previously, but with an upper flat and including growth strata,
(a)�

(b)�

500 m�

500 m�

d above a 308 ramp, which connects to an upper flat, with a 500-m-thick basal

or 600 ka, giving 600 m displacement. We include simple ‘fill to the top’ growth

ed every 100 ka.
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are shown. What is clear is that in both cases the displacement

on the upper ramp is small compared with the far-field slip.

7. Discussion and conclusions

This short note has derived a velocity description of shear

fault-bend folding for both simple- and pure-shear end-

members. The power of this approach is that it is consistent

with the geometric model but allows rates of uplift and rotation

to be derived given an external slip rate. The derived velocities

can then be used in simple mathematical models to test the

geometric consequences of such kinematics on a variety of

different growth sediment scenarios, or other rate-dependent

processes. The inverse problem, determining rates of fault slip,

can also be approached if appropriate geometric and age

constraints are available for a given structure.

In this paper it has not been our intention to promote or

refute a particular model of fault-related folding, or to claim

that the model examined here is more important or timely than

others, but rather to provide a quantification of a particular

model in order that its implications may be more fully explored

and tested. It complements other recent papers on the

kinematics of fault-related folding (fault-bend, fault-propa-

gation or detachment) in which velocity descriptions of

deformation have been presented (Hardy and Poblet, 1994,

1995, 2005; Zehnder and Allmendinger, 2000). The differences

between some of these end-member models may seem subtle,

but the quantification of their kinematics allows, with

appropriate data, their distinction.

Finally, while we have examined the nature of deformation

within the ‘cover’ sequence, we have not dealt with

deformation within the basal unit, or what happens when the

décollement layer is displaced farther than the upper corner of

the footwall ramp and folded over the upper footwall flat. In

addition our models of sedimentation are very simplistic and do

not take into account erosion, transport and sedimentation

induced by the growth of a structure. These and other issues are

the subject of ongoing research.
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